

Search for trilepton SUSY signal at CDF

John Strologas

University of New Mexico

For the CDF Collaboration

Why Physics Beyond the Standard Model?

- Although extremely successful, the Standard Model does not answer all our basic questions about nature
 - Why is the Planck scale and the electroweak scale 17 orders of magnitude apart?
 - How is gravity incorporated?
 - What is the origin of mass?
 - What is the source of dark matter?
 - Why there is a boson/fermion asymmetry?
 - Why there is a particle/antiparticle asymmetry?
 - Why we have several interactions instead of one unified one?
 - **–**
- Our job as experimentalists is
 - to perform experiments to <u>discover new-physics effects</u> that could give answers to the above questions
 - to perform experiments to <u>test current theories</u> that offer answers to the above questions

Supersymmetry

- Theory that predicts a boson for any SM fermion and vice-versa
 - The superpartners differ only in their spin
 - The superparaters of the gauge bosons and the higgs mix to create the charginos and neutralinos which are fermions
- SUSY is obvioulsly broken, which leads to a new mass-spectrum for sparticles. We study "soft" SUSY breaking
 - mSUGRA (LSP=neutralino), GMSB (LSP=gravitino)
- Removes fine tuning and offers ultra-violet completeness
 - Large radiative corrections of superpartners cancel each-other
- Offers possibility of force unification
 - Not exactly possible with SM
- Offers a cold dark matter candidate
 - If the lightest supersymmetric particle (LSP) is stable.
 This is the case if R-parity is conserved
- Possibility of radiative Electroweak symmetry breaking
 - As an alternative to spontaneous breaking

The Tevatron

- Tevatron is still the highest-energy hadron collider (protons-antiprotons at 1.96 TeV CM)
- Instantenous luminosity routinely reaches $325 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1} \text{ (max } \sim 350)$
- Recorded luminosity: > 5.5 fb⁻¹
- Presented in this talk: 3.2 fb⁻¹

The CDF II detector

- Central tracker measures charged particle trajectories
- These trajectories are matched to calorimeter energy depositions and hits in muon chambers to reconstruct <u>electrons</u> and <u>muons</u>
- Hadronic Jets (from outgoing quarks and gluons) and imbalance in transverse momentum (<u>MET</u>) are also determined with the calorimeters
 - MET is indication of particles that do not interact with our detector

Why chargino-neutralino, why trileptons?

 The non-excluded chargino-neutralino production cross-section at the Tevatron is of the order of 0.1-1 pb, depending on the SUSY parameters

- The leptonic decays of the chargino and the next-to-lightest neutralino give
 3 leptons and MET, a signature with low SM backgrounds.
- For these reasons, the trileptons are <u>the golden channel for the discovery of SUSY at</u> the Tevatron

Trilepton chargino-neutralino signal

Decays through W/Z favorable for heavy sleptons, but BR to leptons low

Decays through sleptons guarantee final leptons, but also preference to τ

• Both cases give the signature of interest: *Three leptons and Missing Transverse Energy* (MET) due undetected neutralinos (LSP in mSUGRA with R-parity conservation) and neutrinos

SM Dilepton Backgrounds

 Electroweak (Drell-Yan)
 Measured with MC simulation

Light-flavor QCD (u,d,s quark-based)
Measured with CDF data

Heavy-flavor QCD

 (c,b quark-based)

 Measured with CDF data

SM Trilepton Backgrounds

Electroweak (Drell-Yan+y and diboson) **Measured with MC simulation**

 Z/γ q Z/γ W or Z

Light-flavor QCD (u,d,s quark-based)

Measured with CDF data

Heavy-flavor QCD (c,b quark-based) Measured with CDF data

"ℓ"= fake lepton

Analysis strategy

- Unbiased (blind) analysis:
 - We define <u>control regions</u> where we validate our SM backgrounds
 - We look at the <u>signal region</u> only after control-region background validation

Control regions:

- Investigated dilepton and trilepton control regions in MET- M_{II} - N_{jet} three- dimensional kinematic space
 - 15 control regions overall

Signal region:

 Keep it as simple as possible (based on background minimization) and don't over-optimize (to do both SUSY testing and generic discovery)

Datasets and event selection

- Luminosity: 3.2 fb⁻¹
- Low-p_T (≥4 GeV/c) dilepton triggers and
 high-p_T (≥18 GeV/c) single-lepton trigger (lepton -> e or μ)
- Select 3 leptons or 2 leptons+isolated track
 - All objects central ($|\eta|<1$) in the detector and isolated (e, μ : excess energy/ $p_T<10\%$)
 - Third object as low as 5 GeV/c, but leading ones can be higher (10 or 15 GeV/c)
 - Keeping the tight and loose objects separately for optimizing the discovery and limit significance. Also angular cuts between leptons, MET, jet
- Signal region:
 - 76>M_{II}>15 GeV/c² and M_{II}>106, MET>20, and low jet-multiplicity
 - Exclusion of low mass reduces photonic DY and Heavy Flavor
 - ✓ Z-veto *reduces the electroweak backgrounds*
 - ✓ jet-multiplicity cut cuts top and reduces QCD backgrounds
- Main trilepton backgrounds: Diboson (61%), DY+γ (22%), fakes (15%)
- Main systematics: Fake-rate (50%) and theoretical cross-section uncertainties

Control Regions

- Several control regions in the MET vs M_{II} space are defined, with the extra requirement of low (<2) and high (>1) jet multiplicity
- All control regions are studied for both dileptons and trileptons

Control Regions Results

Dilepton control regions

Trilepton control regions

 Excellent understanding of the Standard Model backgrounds in all our dilepton and trilepton control regions

Some kinematics in control regions

Result and limits

Our counting result is consistent with the Standard Model

Analysis	Backg.	Signal	DATA	
Trilepton	1.5 ± 0.2	7.4 ± 0.7	1	
Dilepton+Track	9.4 ± 1.4	11.2 ± 1.1	6	

 m_0 =60 GeV, $m_{1/2}$ =190 GeV, $\tan \beta$ =3, A_0 =0, μ >0

Current trilepton analysis improvements

- We are in the process of extending/improving the chargino-neutralino analysis (in addition to adding more data, currently 4 fb⁻¹ in total, and new triggers)
- We expand geometrically
 - We include forward ($|\eta|>1$) regions of the detector
- We expand kinematically
 - Low- p_T and low- M_{II}
- We include new objects
 - tau leptons
- Our goal is the completion of the most sensitive CDF analysis
 - For the greatest discovery potential
 - For the best limits settings
 - For setting benchmarks for the current LHC experiments

Increase coverage for muons and electrons

- We will use the full CDF detector, including the forward calorimeters and muon systems.
- The forward objects roughly double (triple) our dilepton (trilepton) acceptance

Lower lepton p_⊤ and dilepton mass

- Lowest p_T value for most objects will be 5 GeV/c and lowest dilepton mass will be 10.5 GeV/c². Also looser cuts for low- p_T leptons will be used
- Motivation: the signal is most probably there !!
 - Due to cascade SUSY decays and the preferable production of staus that decay to taus that decay to soft leptons
- This way we fully utilize the low-p_T dilepton triggers
- Extra backgrounds: Heavy-flavor. We have developed and tested a method that estimates the HF with data

Inclusion of tau leptons

- For many SUSY scenarios and parameters the staus are the lightest sleptons
 - Especially for high tanβ
- As a result, we expect many tau final states
- We catch the leptonic decays of taus through the soft leptons (>5 GeV/c)
- We want to catch the hadronic decays of taus, by using tau objects
 - Initially for Ilτ, eventully for ττΧ decays
- We define a tau using 1 or 3 tracks (for 1 or 3 prong decays) isolated from extra hadronic activity
- For the $[m_0=60 \text{ GeV}, m_{1/2}=190 \text{ GeV}, \tan\beta=3, A_0=0, \mu>0]$ benchmark, <u>our sensitivity to third taus is better than</u> that of third electrons!

Conclusions

- We are searching for new-physics trilepton signal motivated by the chargino-neutralino analysis
- We have performed a trilepton+MET analysis with 3.2 fb⁻¹ of CDF data
- We have not observed any discrepancy with the Standard Model expectation and we set mSUGRA limits
- We are in the process of considerably improving the analysis to maximize our discovery potential and limits-setting power

John Strologas, SUSY 09, Boston

So stay tuned because ...

After all, the chargino is very close to FNAL

Back up

Feeling about the SM cross-sections

John Strologas, SUSY 09, Boston

- But generic production is not enough:
- We care about the branching ratios to leptons
 - ~11%/flavor for W
 - \sim 3.5%/flavor for Z
- We care about the probability for jets to be mis-reconstructed as leptons
 - Depends on the jet and lepton identification requirements
 - $-10^{-2}-10^{-4}$
- And we care about the trigger and reconstruction efficiency and detector acceptance

mSUGRA

The free parameters are

- m₀, the common sfermion mass
- M_{1/2} the common gaugino mass
- tanβ, the ration of higgs vacuum expecation values
- A, the trilear sfermion-sfermion-higgs coupling
- Sign of μ , the higgs parameter scale

Checking one SUSY benchmark point

- This is point $m_0 = 60 \text{ GeV/c}^2$, $m_{1/2} = 190 \text{ GeV/c}^2$, $\tan \beta = 3$, $A_0 = 0$, $\mu > 0$
 - Benchmark used in CDF, Phys. Rev. Lett. 101, 251801 (2008)
- Spectrum created with Isajet 7.79
- The decay to leptons is really good and our acceptance even better
 - Neutralino goes 30% to selectron, 30% to smuon, 40% to stau
 - Chargino goes 2% to electron, 2% to muon, 2 % to tau, 92% to stau
- Cross section (prospino) equals to 0.47 pb.
- Masses:
 - Lightest chargino ~ 122 GeV/c²
 - Next to-lightest chargino ~ 325 GeV/c²
 - Lightest neutralino ~ 67 GeV/c²
 - Next-to-lightest chargino ~ 125 GeV/c²
 - Lightest higgsion ~ 100 GeV/c²
 - Heavy higgsinos ~ 350 GeV/c²

Cut definitions and event-breakdown

CDF RUN II Preliminary $\int \mathcal{L}dt = 2.0 \text{ fb}^{-1}$: Search for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$

Channels	Selection	$(E_T/P_T)_{1,2,3}GeV$		
3tight	3 tight leptons or 2 tight leptons $+$ 1 loose electron	15, 5, 5		
2tight,1loose	2 tight leptons + 1 loose muon	15, 5, 10		
1tight,2loose	1 tight leptons + 2 loose leptons	20, 8, 5(10 if loose muon)		
2tight,1Track	2 tight leptons + 1 isolated track	15, 5, 5		
1tight,1loose,1Track	1 tight + 1 loose lepton + 1 isolated track	20, 8(10 if loose muon), 5		

CDF II Preliminary, 3.2 fb^{-1}											
	$Z \rightarrow ee$	$Z \to \mu\mu$	$Z \rightarrow \tau \tau$	WW	WZ	ZZ	${ m t} ar{ m t}$	Fakes	Total Background	Signal Point	Observed
ttt	0.19	0.00	0.00	0.02	0.38	0.08	0.02	0.16	0.83 ± 0.18	3.64 ± 0.53	1
ttC	0.00	0.06	0.00	0.00	0.21	0.07	0.00	0.04	0.39 ± 0.08	2.62 ± 0.39	0
tll	0.00	0.00	0.08	0.00	0.10	0.03	0.01	0.03	0.25 ± 0.08	1.12 ± 0.19	0
Trilepton	0.19	0.06	0.08	0.02	0.69	0.18	0.03	0.23	1.47 ± 0.21	7.38 ± 0.68	1
$\mathrm{tt}\mathrm{T}$	1.33	0.27	1.10	0.53	0.24	0.11	0.29	1.98	5.85 ± 1.25	7.15 ± 0.96	4
tlT	0.83	0.60	0.52	0.40	0.07	0.07	0.14	0.91	3.53 ± 0.72	4.06 ± 0.57	2
Dilepton + Track	2.16	0.87	1.62	0.93	0.31	0.18	0.43	2.89	9.38 ± 1.44	11.21 ± 1.12	6

m Sugra Signal point: $M_0=60, M_{1/2}=190, \tan\beta=3, A_0=0$

26

Event Display (1)

Event display (2)

Hadronic Tau reconstruction

- |η|<1
- E>20 GeV
- M<1.8 GeV/c²
- N_{tracks} (inner cone)=1 or 3
- N_{tracks} (between inner and outer cone)=0
- N_{towers}≤6
- good tracking for seed track
- d0 cut on seed track
- track-EMcalorimeter matching with seed track